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Abstract

The overall objective of this research program was to investigate methods to mod-

ify the leading edge separation region, which could lead to an improvement in

aeroelastic stability of advanced airfoil designs. The airfoil section used is rep-

resentative of current low aspect ratio fan blade tip sections. The experimen-

tal potion of this study investigated separated zone boundary layer C:bw removal

through suction slots. Suction applied to a cavity in the vicinity of the separation

onset point was found to be the most effective location. The computational study

looked into the inr2uence of front camber on _utter stability. To assess the inE2u-

ence of the change in airfoil shape on stability the work-per-cycle was evaluated

for torsion mode oscillations. It was shown that the front camberline shape can

be an important factor for stabilizing the predicted work-per-cycle and reducing

the predicted extent of the separation zone.

In addition, data analysis procedures are discussed for reducing data acquired

in experiments that involve periodic unsteady data. This work was conducted

in support of experiments being conducted in the NASA Glenn Research Center

Transonic Flutter Cascade. The spectral block averaging method is presented.
This method is shown to be able to account for variations in airfoil oscillation

frequency that can occur in experiments that force oscillate the airfoils to simulate
Dutter.
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I. INTRODUCTION

1.1. Background

One of the challenges in the design and development of fan and compressor blades

for aircraft gas turbine engines is Cutter. Flutter, in general, produces large vibra-

tion stress and limits the life of turbomachine blades. To increase the efficiency

of fans and compressors and reduce weight, current design trends are for thinner

blades with increased loading per blade. These design practices produce blade

designs that are more susceptible to _utter. \_rhen a blade encounters _tter it

results in an extensive redesign program. During this redesign process the de-

sired aerodynamic shape is altered to eliminate _htter from the engine operating

regime. The resulting blade design often generates lower stage efficiency, and in

many instances increased engine weight.

There are many different types of 5htter that can occur in fans and compres-

sors; Figure 1.1 illustrates the [_=utter regions on a compressor performance map.

Subsonic/transonic stall ff_utter, schematically depicted near the stall line at part

speed, is the most difficult type of [htter to predict accurately because viscous

effects are signi_ant. For these types of kbws the Navier-Stokes equations need to

be used. The unsteady Reynolds Averaged Navier-Stokes equations have been de-

veloped to account for viscous effects (e.g., Chen, J. P., and W. R. Briley[1], Weber

and Platzer[2], Swafford et al.[3], Ekaterinaris and Platzer[4], Sid_n[5], and Wu

et al.[6]). For these Reynolds averaged equations turbulence models are needed

for the Reynolds stress terms. A transition model is also necessary, but in most

cases the transition location is speci2ed at the leading edge. Since the Reynolds

numbers in turbomachinery are large enough to guarantee the _ow is turbulent,

suitable transition and turbulence models are crucial for accurate prediction of

steady and unsteady separated [_bw.

Due to the mathematical assumptions, experimental data are needed to verify

these models and to indicate necessary re[hements. Unfortunately, only a limited

quantity of unsteady aerodynamic data exists at large mean incidence angles (e.g.

9
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Figure 1.1: Compressor performance map showing [2utter boundaries.

Carta and St. Hilaire[7], Carta and St. Hilaire[8], Carta[9], Buffum et. al.[10] and

Buffum et. al.[ll]). In fact, the signi_ant effects of unsteady separated kbw at

realistic reduced frequencies and Mach number values have not been completely
addressed.

1.2. Objectives

The goals of this research program were to investigate two methods that could

potentially be used for [!utter control when _w separation is present. These

methods are [ibw control type methods. The first is ffbw control through boundary

layer suction and the second is rbw control through airfoil shape modiEt:ations in

the leading edge region.

The speci_ research objectives are listed below:

1. Modify the University of Kentucky, Paducah (UKP) wind tunnel test section

to allow testing of a cascade modeled after the NASA Glenn Research Center

Transonic Flutter Cascade.

2. Design an airfoil for the UKP wind tunnel with suction slots for separation
[bw control.



3. Performpreliminarytesting of the cascadeairfoils with 15t)wcontrol in the
newtest cascadetest section.

4. Investigatethe in[2uenceof airfoil morphingon [2utterstability.

In addition, in support of the work that wasbeingconductionin the NASA
GRCTFC, researchwasconductedonsignalprocessingof periodic [R)wmeasure-
mentsand correctionof blademountedpressuretransducersignalsfor oscillation
effects.



2. TECHNICAL APPROACH

The approach used to achieve the objectives listed above involves performing

experiments in the University of Kentucky, Paducah (UKP) wind tunnel and

computational modeling. The research was conducted using a modern airfoil
cross-section.

2.1. Airfoil Design

The airfoils used in this study have a cross-section similar to that found in the tip

region of current low aspect ratio fan blades. The airfoil section was designed using

the Pratt & Whitney (P&W) fan and compressor aerodynamic design system,

which is for [_2)w in circular ducts. To simulate the [_bw in the linear cascade,

the airfoils were designed using a radius ratio of 0.99. The loading levels, losses,

solidity, and stagger angle are consistent with modern design practice for fan

blades. The airfoil cascade parameters are given in Table 2.1, and Figure 2.1

illustrates the geometry de[2hitions.

Table 2.1: Airfoil and cascade parameters

Chord, C 89.2 mm

Maximum thickness, tma x 0.048 C

Location of maximum thickness, x,_a, 0.625 C

Camber angle, 0* -9.5 °

Number of airfoils 9

Stagger angle, @ 60 °

Solidity, C/S 1.52

Pitching axis, (zp_tch/C, Ypitch/C) (0.5, -0.017)

12
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3. EXPERIMENTAL INVESTIGATION

A series of experiments were conducted in the UKP Wind Tunnel. These experi-

ments concentrated on methods to modify the leading edge separated _bw region.

The interest in boundary layer separation control has a rich history with many

contributors. Recently there has been renewed interest in this area, which has

been largely driven by the miniaturization of electromechanical devices. Hence,

some of the more recent literature, which is applicable to this research program,

will be discussed. The references in these papers can be consulted for additional

background information.

Yoshihara and Zonars[12] investigated the inLhence of a jet of _nid directed

downward near the trailing edge of an airfoil Lap ('jet-_p') on the lift and drag

of a transonic airfoil. The results of this study indicated that this device was able

to increase lift. Seifert et al.[13] used oscillatory blowing to delay separation on

a [2apped NACA 0015 airfoil. The chordal Reynolds numbers in this experiment

ranged from 0.1 to 1 Million. The wM1 jet originated from a slot located above

the hinge of the flap. The Eap length was 25% of the airfoil chord. Flap dejections

of 20 ° and 40 ° were used. Using small amounts of steady blowing with a relatively

low amount of [LOw oscillation resulted in signi_cant increases in the lift at all

incidence angles investigated.

This later work was extended by Seifert, et al.[14] to include different airfoil

geometries that included a NACA 0015 airfoil with a leading edge slot and an

oscillating flap located near the leading edge. The maximum chordal Reynolds

number in this investigation was 1.2 Million. Results indicated that the employ-

ment of periodic oscillations in turbulent boundary layers permits larger pressure

gradients without separation. This increases the lift at angles-of-attack and flap

de_ctions where the boundary layer would normally be separated. To control

separation it was found that the oscillations introduced into the _w should be-

come a maximum in the vicinity of the separation point. Hence, the most efficient

location of an actuator is near the separation location.

Seifert and Pack [15] performed further experiments with a NACA 0015 air-

14



foil usingthe NASA Langley Research Center 0.3-m Transonic Cryogenic Wind

Tunnel. In this investigation the chordal Reynolds number ranged from 8 to 28.2

Million for most experiments. Active control of the boundary laver separation

was demonstrated at these Reynolds numbers using oscillatory excitation as was

done in previous investigations.

Closed-loop digital feedback control was implemented on a model of a 20%

thick airfoil that was a variation of the Glauert Glas II airfoil by Allan et a1.[16].

This thick airfoil had a favorable pressure gradient up to 55% chord followed by

a severe adverse pressure gradient that generated separation in the 66% chord

region. The chordal Reynolds number in these experiments was 16 Million. Em-

ploying oscillatory [3c)w excitation just upstream of the separation point reduced

boundary layer separation. The amplitude of the oscillatory excitation controlled

the reduction in the separation region.

This model was also used by Seifert and Pack[17] to conduct a series of experi-

ments at chordal Reynolds numbers from 2 to 40 Million using _w oscillation as

well as steady blowing or steady suction. Steady blowing or suction was able to

fully reattach the ffbw and recover the ideal pressure distribution. Furthermore,

weak suction with a superimposed periodic excitation was found to increase the

sensitivity of the shear layer to oscillation frequency.

The concept of using boundary layer suction for fan and compressor blades

is being investigated to generate higher pressure ratios per stage (Kerrebrock et

al.[18] and Kerrebrock et al.[19]). This approach is interesting in that it would

decrease the number of stages in a fan or compressor, which would reduce engine

weight. Purthermore, the separation control used by this method has the potential

to control the stall E]utter response of fan and compressor blades.

At 10° chordal incidence angle the airfoils used in this investigation separate in

the vicinity of the leading edge circle on the suction surface with a reattachment

point in the 46% chord region for a Mach number of 0.5.

3.1. Wind Tunnel Modi0cations

The University of Kentucky, Paducah (UKP) wind tunnel, which is schematically

depicted in Figure 3.1, draws air from the atmosphere through a set of screens into

a 20.6:1 smoothly contracting inlet. The contracting inlet exits into a rectangular

test section; the frames for the test section and inlet are on casters with leveling

screws to permit rapid disassembly of the tunnel to interchange test sections. The

test section exits into a slowly diverging duct that transitions from a rectangular
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Inlet
Diffuser Fan Exit

Figure 3.1: Schematic of UKP wind tunnel.

cross-section into a circular cross-section for the fan assembly. A 50 HP motor

drives the fan. Downstream of the fan assembly, the ffbw exhausts to atmosphere

after passing through an exit diffuser.

The traditional wind tunnel test section was replaced with a cascade test
section. The new cascade test section was modeled after the test section of the

NASA Glenn Research Center Transonic Flutter Cascade (TFC)[10][20][21], see

Figure 3.2. The converging inlet section is connected to a transition duct. The

walls of the transition duct are set to provide a 10 ° chordal incidence angle to

the NASA/P&W airfoil. The exit side walls are set at a 24 ° angle[20],[21] and

the _Zbwexits into the diffuser portion of the wind tunnel. Additionally, the top

wall is made of Plexiglas to provide optical access to the test section. The test

section was constructed to hold nine airfoils that have a chord length of 13 in.

(330.2 rnrn). The solidity and blade geometry are the same as those used in the

TFC. The size of the inlet and diffuser of the existing tunnel and limitations of

the rapid prototyping (stereo lithography) machine used to produce the airfoils

restricted the chord length of the airfoils. The chordal Reynolds number for this

chord length is approximately 1 Million. This is similar to the chordal Reynolds
number in the TFC.

Regular pneumatic taps in the walls of the tuimel were used to measure the

inlet and exit static pressures. These measurements were used to determine the

cascade pressure rise, inlet Mach number, inlet static density, and inlet static

temperature. A cobra probe used upstream of the airfoils measured the stagnation

pressure and [2bw angularity. Airfoils instrumented with static pressure taps were

used to quantify the steady aerodynamic loading.
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Figure 3.2: Schematic diagram of UKP nine airfoil cascade test section.

3.2. Airfoil Flow Control Design

The airfoil contour used in this investigation was the NASA/P&W airfoil, which

was previously presented in Section 2.1. The cascade airfoils were made at the

University of Kentucky Center for Manufacturing by a rapid prototyping (stereo

lithography) machine. The material is SOMOS 7SLA, which is a sand-able plastic-

type material. The rapid prototyping machine is limited to a blade chord of 13

in. (330.2 rnm) and the tunnel required the span of the blade to be 20.5 in. (520.7

ram). The rapid prototyping machine's maximum building capability is 13xl0xl0

in. (330.2x254x254 ram). Due to this fact, the blades were made in two pieces

and mated together at approximately 73% span to arrive at the required 20.5 in.

(520.7 ram) span length.

Conventional surface static pressure taps were integrated into the blade design.

The location of the pressure taps were chosen to allow greater resolution of the

surface pressure on the airfoil near the leading and trailing edges, as illustrated in

Figure 3.3. Pressure taps are also located at 5%, 25%, and 95°70 span.

Cavities with slots that extend to the suction surface of the blade were also in-

tegrated into the airfoils, which were used to control the separated boundary layer.

Three separate designs were fabricated as illustrated in Figure 3.4 (Con[2guration
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Figure 3.3: Schematic of midspan airfoil surface steady pressure measurement
locations.

1), Figure 3.5 (Con_guration 2), Figure 3.6 (Con_guration 3). The slots extended

over the entire span of the airfoil and were placed based on the []aw visualization

test conducted in the TFC and computational simulations using TURBO[l] and

NPHASE[3],[22]. The slot nearest the leading edge for all three conEgurations

was placed just downstream of the leading edge circle, because the _w over this

airfoil at 10° chordal incidence separates immediately after the leading edge cir-

cle, and it is desirable to have the boundary layer control slot near the separation

onset point. The slot farthest from the leading edge for slot conEgmrations 1 and

3 were placed near the mid-chord where TFC experiments showed the boundary

layer reattached. The middle slot location for slot confTgurations 1 and 3 was po-

sitioned in the area expected to have the thickest region of separated Ebw based

on computational simulations. The slot con_mration 2 airfoil has a leading edge

slot that is angled upstream rather than downstream as the other slots to investi-

gate the effects of suction entrance orientation. This airfoil also features a second

slot farther from the leading edge, but closer than the comparable slots from the

other conEguration to further investigate the effect of slot entrance orientation on

separated _w control. The 0.25% chord width of the boundary layer control slots

is based on similar slots used by Seifert and Pack[17]. Tile primary _bw control
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Figure 3.4: Boundary layer control cavity conL_guration 1.

mechanism will be boundary layer suction. However, boundary layer blowing

could also be utilized. Boundary layer suction was accomplished using vacuum

type pumps.

Figure 3.7 shows a photograph of two of the cavities for con[2guration 1 along

the airfoil split line. The mid and aft cavities are clearly visible along with

the alignment pins. The static pressure taps are also visible. Stainless steel

tubing was used in the static tap holes to insure leak free connections between the

two airfoil sections. Furthermore, RTV was used when joining the two sections

together to prevent leaks from the cavities or static tapping at the split line.

3.3. Results

Testing has been performed and is continuing on cavity con_uration 1, which

will be discussed below. The test section inlet Mach number was 0.12 and the

Reynolds number based on airfoil chord was approximately 1 Million.

The steady surface pressure coefficient .(CP = _)R-P is presented in Figure 3.8

for the case when no suction is present. The no Imw control data exhibits a plateau

in the pressure coefficient distribution on the suction surface up to approximately

20% chord. This is characteristic of separated _w that originates in the leading

edge region. Downstream of this region there is a rapid drop in the pressure

coefficient as the kbw approaches the covered section of the [2)w passage.

Various combinations of suction applied to the three cavities for con__guration

1 were investigated. In all cases suction wa_s applied to only the center airfoil in
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Figure 3.5: Boundary layer control cavity con[iguration 2.

3,2200 =-
.07

Figure 3.6: Boundary layer control cavity con[_uration 3.



Figure 3.7: Photographof airfoil sectionwith cavity conEguration1.

the cascade.Figure3.9comparesthesteadysurfacepressurecoefficientfor theno
Lbwcontrol conditionto the casewheresuctionwasappliedto themiddleand aft
cavitiesfor slot design1. As illustrated in Figure 3.9,suctionappliedto the two
cavitiesdownstreamof the leadingedgedid not providemuchimprovementfrom
thebaselineno Ebwcontroldata. However,movingthe suctionto the leadingedge
wasfound to havea dramatic in[2uenceon the steadysurfacepressurecoefficient
as illustrated in Figure 3.10.

Figure 3.10showsthe pressurecoefficientat 5%chord hasincreasedsubstan-
tially overthe baselineno _w controldata. This indicatesan increasedsuction
peak and a decreasein Ebwseparation. The pressurecoefficientcontinuesto
decreasedownstreamof the 5%chordlocationto the valuesfound for the no L2)w
control casein the 50%chordregion.

3.4. Summary and Conclusions

A nine airfoil cascadetest sectionwasfabricated and installed in the Univer-
sity of Kentucky, Paducahwind tunnel. Threesuction slot con_nn'ationswere
designedfor Ebwcontrol. The Universityof KentuckyStereoLithography (SLA)
machine,which iscapableof makingintricatethree-dimensionalpartswasutilized
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to manufacture the cascade airfoils with the hollow cavities and slots at the de-

sired locations. The cavities and slots were designed using three-dimensional solid

modeling. The SLA machine used the output from the solid modeling software to

manufacture the desired airfoil geometry. The three different cavity con[_gurations

were designed to quantify the inYluence of cavity entrance orientation and cavity

location. These designs could be use for boundary layer suction or blowing. This

could include the use of time dependent schemes for suction or blowing for [bw

control.

Boundary layer suction was used on the suction surface of an advanced fan

or compressor blade contour to control the separated Uow region in the leading

edge region. This was accomplished through slots in the suction surface that were
connected to hollow cavities within the airfoil cross-section. The air was suctioned

from these cavities using vacuum type pumps.

Suction applied to the cavity with the entrance in the vicinity of the separa-

tion point was found to have the greatest impact on the steady surface pressure

distribution. This is consistent with results found by previous investigators.



4. COMPUTATIONAL INVESTIGATION

\Vith the advent of smart materials it is becoming possible to alter the structural

characteristics of turbomachine airfoils. This change in structural characteristics

can include, but is not limited to changes in the shape (morphing) of the airfoil.

Through changes in the airfoil shape aerodynamic performance can be improved.

Moreover, this technique has the potential to act as a Critter suppressant.

To assess the in[hence of the change in airfoil shape on stability the work-per-

cycle will be evaluated for torsion mode oscillations. This will be accomplished as

follows. Prom the simulations of the airfoil oscillating in a pitching motion around

the mid-chord the k-i-st harmonic pressure coefficient can be quantiLJed.

P_ (x) (4.1)
Cp- pV2a 1

The difference in pressure between the lower and upper surfaces yields the force
exerted on the airfoil.

zxc.(.)=c., .... (.)-c.o....(x) (4.2)

The unsteady aerodynamic moment coefficient for thin airfoils is de[Ehed as

1

0

where C is the airfoil chord and Zpitch/C = 0.5 for the NASA/P&W airfoil. The

work done on the airfoil by the Enid per cycle of oscillation when the airfoil is

oscillating in a pitching (torsion) motion is represented by cyclic integral of the

real part of moment times the real part of the differential pitching angle as given

below (Carta [23]). For sinusoidal motion

I¥ = Re d Re [a] (4.4)

26



and

= c le (4.5)

where
i

M R

M I

is the

is the real part of the complex valued unsteady aerodynamic moment

is the imaginary part of the complex valued unsteady aerodynamic moment.

Substitution into the cyclic integral for the work per cycle and carrying out the

integration yields

W = 7realM "I . (4.7)

This is the aerodynamic work being done on the airfoil. A positive value indi-

cates unstable motion. Note that the aerodynamic work-per-cycle is proportional

to tile imaginary part of the unsteady aerodynamic moment coefficient, Im [CM],

with Im [CM] > 0 indicating instability. Hence, through examination of the in-

tegrand of the unsteady aerodynamic moment coefficient localized areas of the

airfoil can be identi_d that contribute to airfoil instability. This type of infor-

mation can be used to identify local _w physics with airfoil instability and will

be used to direct the changes made in the shape of the airfoil.

In this work the integrand of the complex valued unsteady aerodynamic mo-

ment coefficient will be referred to as the Work Impulse and will be represented

asc;

4.0.1. Airfoil Geometry ModiUcations

For the baseline airfoil given in Table 2.1 and Figure 2.1, the camberline can be

changed based on some preset constraints. There are two design variables used

in this study to control airfoil shape, as illustrated in Figure 4.1. One is airfoil

leading edge camberline angle (0), and the other is airfoil leading edge camberline

height from the reference point (6). The Reference point is the lowest point along

the airfoil camberline. For this study, the airfoil thickness distribution is held

constant.

Figure 4.2 illustrates that there are three fundamental camberline shapes used

in this investigation. These are:
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Figure 4.1: Baseline NASA/Pratt&V_qlitney airfoil shape.

1. The baseline camber case with 0 = -6.2 ° and 5 = 0.066.

2. The zero leading edge camber case where 0 = 0° and 5 = 0.

3. The mirror case where the camberline is a mirror image of the baseline
camber case with 0 = 6.2 ° and _ = -0.066.

A polynomial, which is given below in Equation 4.8, is used to locate the leading

edge for each of these airfoil cases. Additionally, given the desired 5 and 0 for a

change in the airfoil front camber, Equation 4.8 also provided the initial guess for

the location of the leading edge (x0, y0) as will be discussed below.

Yl_ (x) = bl + b2x + b3x2 (4.8)

Now lets consider the front camberline of the airfoil. The front camberline of

the airfoil is represented by the third order polynomial

Y_z (x) = al + a2x + a3 x2 + a4 x3. (4.9)

Four boundary conditions are used to [:hd the coefficients al through a4. These

boundary conditions are:
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Figure 4.2: Schematic diagram illustrating method utilized to change the front

camber of the NASA/P&W airfoil.

1. The camberline angle at the leading edge or nose point, 0

2. The leading edge offset or height from the Reference point, 6

3. The location of the Reference point, which is the lowest point on the baseline
camberline

4. The camberline slope at the Reference point, which is zero.

These four boundary conditions will yield a camberline where the arc length,

S,_,-c]calc_,zat,e, can be different than the original NASA/P&W (baseline) airfoil.

In this investigation the camberline arc length, SaTe, was held constant at the

baseline value. This was accomplished by using Equation 4.8 to de[3ae an initial

value of the leading edge location (z0,n,_o;, Y0,_,,o,) for the desired airfoil front

camber shape, which is given by the design parameters 5 and 0. The leading

edge point is used with Equation 4.9

Yo = al + a::co + aax 2 + a4x_ = _ + Yl_=0 (4.10)

along with the height of the reference point

Yl = al + a2xl + a3x_ q- a4x 3, (4.11)
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Figure 4.3: Baseline (NASA/P&W) airfoil shape with 0 = -6.2 ° and 5 = 0.66.

the slope of the camberline at the leading edge

tan (0) = a2 + 2aax0 + 3a4zg, (4.12)

and the slope of the reference point

tan (0 °) = a2 + 2aaxl + 3a4x_ (4.13)

to obtain the four coefficients al, a2, aa, and a4.

This procedure may lead to the camberline arc length being larger than the

baseline value. This results from the fact that x0 is inOaence by the desired

camberline offset, (f, and slope, 0. To determine the actual location of the leading

edge, z0, a search is conducted in the domain from (x0,n,,., - 0.1, z0,.,t,o_ + 0.5)

to ensure that the camberline arclength matches the baseline airfoil value. This

yields the /]aal values of the coefficients al, a2, aa, and a4.

Figures 4.3 through 4.5 illustrate variations in the airfoil leading edge shape

for different values of the design variables of the camberline offset, 5, and slope,
0.

4.1. Grid Generation

TCGRID (Turbomachinery C-GRID) is a three-dimensional grid generator for

turbomachinery developed at the NASA Glenn Research Center. It can generate

both single-block grids and multi-block grids for a single periodic passage, which

can be either C-grids or H-grids. An elliptic solver controls the grid spacing
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Figure 4.5: Airfoil shape for 0 = 8° and 5 = -0.075.



Table 4.1: Turbulence model parameters.
Parameter Baldwin-Lomax Modi[Bed Baldwin-Lomax

0.41 0.40

K 0.0168 0.0168

Cop 1.6 1.216

CKl_b 0.30 0.646

Cwk 0.25 1.00

and the angles at the blade surface and outer periodic boundary to generate

blade-to-blade grids[24]. The linear cascade option was used to generate the two

dimensional grids for an extruded section with the mid-span section grid being
used.

A two-dimensional mid-span grid is shown in Figure 4.6. The grid size is

(i = 162) x (j = 65). The [2rst grid from the airfoil solid surface is 10 -4 yielding

an average y+ = 0.597.

4.2. Computational Model

The computational model (NPHASE) analyzes two dimensional steady and un-

steady _w. It is capable of analyzing both inviscid (Euler) and viscous (thin

layer Navier-Stokes equations) kbws. For unsteady Uows a time marching method

is used with a deforming computational mesh for oscillating airfoils. This fully

nonlinear computational model uses multiple airfoil passages in order to satisfy

the periodicity condition. A summary of the development efforts and current ca-

pabilities of this computational model is given by Swafford et al.[3] and Ayer and

Verdon[22].

Turbulent kqaw is modeled using the Baldwin-Lomax[25] algebraic turbulence

model. There is no transition model and the kUaw is considered fully turbulent

starting at the airfoil leading edge. The modeling parameters in the Baldwin-

Lomax model have been modi_d by previous investigators to achieve better

agreement with the Cebeci and Smith model[26]. NPHASE was originally de-

veloped using the parameters published by Baldwin-Lomax[25] (except _). For

this work the model parameters were updated based on the work of Chima, Giel,

and Boyle[27]. Table 4.1 presents the original parameters used in NPHASE and

the modeling constants used in this investigation.

NPHASE is executed in a two-step process. First, the steady Uow Deld is
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Figure 4.6: Two-dimensional baseline 165x65 grid.



determined. Once the steady CDw 2eld is determined, the unsteady calculations

can be initiated. For this research the unsteady calculations were for an airfoil

oscillating in a pitching motion around the mid-chord of the airfoil.

4.3. Results

4.3.1. Flow Conditions

Results will be presented for the chordal incidence angles (_) of 0 ° and 10 ° at

an inlet Mach number (M) of 0.5. Each chordal incidence angle was based on

the cascade inlet angle relative to the airfoil chord-line (see Figure 2.1); upstream

[-Sbw angle measurements were not made during the experiments[10]. Unsteady

data will be presented for a 180 ° interblade phase angle (0) and a reduced fre-

quency (k _c- 2v,, ) of 0.4. For all cases the airfoils are oscillated in a pitching
(torsional) motion about the mid-chord at an oscillation amplitude of 1.2 °. All

data-computation correlations are referenced by the experimental value of the

chordal incidence angle and inlet Mach number. The Reynolds number was 0.9
Million.

The results will be presented in two parts. In the _st part the low chordal

incidence angle (_ = 0 °) will be considered with individual cases computed as
listed below.

. Steady and oscillating airfoil simulations are made using the original coor-

dinates for the NASA/P&W airfoil, i.e. the baseline airfoil. This is referred

to as the baseline case. Predictions are correlated with the experimental

data.

2. Steady and oscillating airfoil simulations are made of an airfoil generated

with the airfoil modi_ation routines for the leading edge camber angle

(0 = -6.2 °) and leading edge camber height (5 = 0.066) for the NASA/P&W

airfoil. This airfoil is referred to as the simulated baseline airfoil. These re-

sults are correlated with the baseline case to validate the airfoil modiDcation

methodology. This case is called the simulated baseline case.

3. To study the inDuence of the design parameters 0 and 5 on stability, the

leading edge camber angle is set to 0 ° and the leading edge camber height

is set to 0 and an airfoil is generated without any camber in the leading

edge region. Steady and oscillating airfoil simulations of this airfoil are



comparedwith the baselinecase. The work impulse function is usedto
showan improvementin the predictedstability in the airfoil leadingedge
regioncomparedto the baselineairfoil. Theleadingedgeregionis the region
betweenthe leadingedge(nosepoint) and mid-chord.

The secondpart considersthe high chordalincidenceangle (_ = 10°). The
individual casesconsideredare listed below.

. As for the small mean incidence operating condition, steady and oscil-

lating airfoil simulations are made using the original coordinates for the

NASA/P&W airfoil, i.e. the baseline airfoil. Predictions are correlated with

the experimental data.

. A search was conducted for minimum changes in the leading edge cam-

ber height (5) that yielded predicted 2ntter stability in the leading edge

region holding the leading edge camber angle constant at -6.2 ° . The mini-

mum change in (_ was taken to be the value that yielded a maximum work

impulse in the leading edge region of zero. Steady and oscillating airfoil

simulations for the [3aal airfoil shape are correlated with the baseline airfoil.

The improvement in the predicted airfoil stability is illustrated through a

comparison with the baseline airfoil using the work impulse function.

. As for the small mean incidence condition, steady and oscillating airfoil

solutions were generated for airfoil resulting from a leading edge camber

angle of 0 ° and a leading edge camber height of 0. The work impulse flmction

is used to show an improvement in the predicted stability in the airfoil

leading edge region compared to the baseline airfoil.

Two-dimensional grids from TCGRID are used with 162 grids in the axial

direction and 65 grids in the circumferential direction (162 x 65). To establish

grid independence results from the 162 x 65 grid are compared with results from

a 181 x 81 grid and a 301 x 121 grid for most cases.

4.3.2. Baseline Case: Steady Flow for _ = 0 °

The baseline case uses the original surface coordinates from the NASA/P&W

airfoil. The airfoil shape is illustrated in Figure 4.3.

The cascade inlet Lbw angle was varied until the best match was found between

the steady chordwise pressure coefficient data \(Cp = _)_ -P and the predictions.



Table4.2: InFJuenceof grid resolutionon reattachmentpoint for the low incidence
anglecase.

Airfoil Case Grid Size Separation Point Reattachment Point
NASA/P&W 181x 81 0.005C 0.067C
NASA/P&W 301 x121 0.005C 0.051C
NASA/P&W 162× 65 0.005C 0.105C

This resultedin a 1° chordalincidenceanglebeingusedin all the presented[5:)w
solutions.Computationswereconductedon threegrids. The grid sizesare181x
81,301 x121,and 162 x 65. The convergencehistory for the lift coefficientand
the absolutevalueof the averagedensityresidualarepresentedin Figures4.7and
4.8, respectively.

For eachgrid it is seenthat the averagedensityresidualis lessthan 10-s and
the lift coefficienthasstabilized. Theseare indicationsof a convergedsolution.
Future resultswill presentthe convergencehistory of the lift coefficientfor steady
kbw computationswith the convergencehistory of the averagedensity residual
being typical of what is seenin this case.

Figure 4.9 presentsthe correlationof the predictedsteady surfacepressure
coefficientwith the experimentaldata. The correlationof the predictionswith the
experimentaldata showsthere is a deviationwith the experimentaldata along
the upper(suction)surfacein the leadingedgeregionwherethe L1)wis separated.
Thelargergrid givesaslightly higherpressurecoefficientin the separationregion,
but yieldsthe sameseparationpoint asthe 181x 81grid.

Thepredictedreattachmentpoint for the threegridsisgivenin Table4.2. The
extent of the computedseparationzoneis shownin Figure 4.10,which presents
contoursof pu.

For the 181 x 81 and 301 x 121 grids, the reattachment point is at 6.7% and

5.1% of chord respectively, which are only slightly different, whereas the separation

point is at 10.5% of chord for the relatively small size grid. For computational

accuracy, a large size grid is preferred. However, for computational efficiency, a

small size of grid is preferred. To guarantee computational accuracy and efficiency,

a grid size of 162 x 65 is judged sufficient for the computations presented below.

4.3.3. Baseline Case: Unsteady Flow for _ = 0°

The effect of time step was investigated for this case. The grid size of 181 x 81

was used for this study. Figure 4.11 presents the predicted work-per-cycle for 512
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Figure 4.7: Lift coefficient convergence history for the low incidence baseline case.
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points per cycle, 1024 points per cycle, and 2048 points per cycle. The presented

results indicate that the work-per-cycle is constant after the second cycle. This is

further illustrated in Figure 4.12, which presents the unsteady moment coefficient.

Figure 4.13 presents the predicted work-per-cycle for 162 x 65 grid size, 181 x

81 grid size, and 301 x 121 grid size. As shown above, these results indicate that

tile work-per-cycle is constant after the second oscillation cycle and there are only

slight differences in the work-per-cycle with grid size. In addition, for this Fow

condition 1024 points per cycle is sufficient for the unsteady simulations.

The _st harmonic pressure coefficients are shown in Figure 4.14. The lower

surface response is dominated by Re(Cp) forward of mid-chord. The imaginary

part of the lower surface is underpredicted. There is good agreement between

the experimental data and the predictions for the upper surface. All three grid

sizes show good agreement with each other. Also, the predictions show trendwise

agreement with the experimental data.
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4.3.4. Baseline Case and Simulated Baseline Case: Steady Flow for

_= 0 °

The baseline case uses the original airfoil surface coordinates, see Figure 4.3. The

simulated baseline case uses airfoil surface coordinates generated by the airfoil

surface generation code as illustrated in Figure 4.15.

The simulated baseline case had a leading edge camber angle of -6.2 ° and

6 = 0.066. Once the simulated baseline case is veriC-led, airfoils can be modi_d

to get pro,Zles where the unstable work impulse is stabilized in the leading edge

region.

The 1° chordal incidence angle, which was established in the previous section

as giving the best correlation with the experimental results, was used for these

solutions. The convergence history for the lift coefficient is presented in Figure

4.16. Figure 4.16 shows that after the initial transients from the assumed uniform

_Uowused for the initial condition, the lift coefficient reaches a steady value after

approximately 6000 iterations.

Figure 4.17 presents the correlation of the predicted steady surface pressure co-

efficient with the experimental data. For the simulated baseline case, the reattach-

ment point was predicted to be at approximately 8.19% chord, which is slightly

lower than the baseline case (see Table 4.2). As illustrated below, there is much

better correlation between the two grid sizes for the unsteady ffbw computations.
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4.3.5. Baseline Case and Simulated Baseline Case: Unsteady Flow for
_= 0 °

For the unsteady ffbw computation, the unsteady moment coefficient (CM) con-

verges to a sinusoidal type wave shape for both the baseline case and the simulated

baseline case, as shown in Figure 4.18. The work-per-cycle converged after two cy-

cles with the simulated baseline case having a slightly higher value, as illustrated

in Figure 4.19.

The _st harmonic unsteady surface pressure coefficient is presented in Figure

4.20. Both con[_gurations have similar correlations with the experimental data as

was found above. Also, note that the baseline case and the simulated baseline

case have good correlation with each other.

For the work impulse, both computational predictions are slightly below the

experimental data, but exhibit good trendwise agreement as shown in Figure

4.21. The two computations exhibit excellent correlation with each other. From

the work impulse for the experimental data, it can be clearly seen, the baseline

case is unstable in leading edge region.

These results validate the airfoil geometry generation routines.
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Figure 4.18: Low incidence time dependent moment coefficient for the low in-

cidence angle case: a) Baseline airfoil shape, and b) Simulated baseline airfoil

shape.
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Figure 4.19: Low incidence operating condition work-per-cycle: a) Baseline airfoil

shape, and b) Simulated baseline airfoil shape.
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coefficient distribution for the low incidence angle operating condition.
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4.3.6. 0 = 0 ° and 5 = 0 Case: Steady Flow for _ = 0 °

The case 0 = 0 ° and 5 = 0 is the case that yields a stable work impulse function

with both leading edge camber height changes and leading edge camber angle

changes, see Figure 4.22. The lift coefficient convergence history is shown in

Figure 4.23, which indicates the steady Fbw solution has converged.

Figure 4.24 shows a dramatic change for the 0 = 0 ° and 5 = 0 airfoil steady

surface pressure coefficient Cp compared with experimental data and baseline case.

The Cp increases in the leading edge region for both the pressure and suction

surfaces and decreases along the chord for the suction surface compared with

baseline case. Additionally, there is good agreement between the two different

sized grids.

4.3.7. 0 = 0 ° and 5 = 0 Case: Unsteady Flow for _ = 0 °

For airfoil oscillation, the unsteady moment coefficient converges to a sinusoidal

wave type shape as shown in Figure 4.25, and the work-per-cycle converges to a

cycle independent value after two oscillation cycles, see Figure 4.26. This indicates

the simulation has converged to a steady oscillatory solution.

Figure 4.27 shows a distinct difference between the baseline case and the 0 = 0 °

and _ = 0 case for the unsteady surface pressure coefficient in the leading edge

region. Furthermore, there is good agreement between the different size grids.

The work impulse Figure 4.28, the 0 = 0 ° and 6 = 0 case is stable in the leading

edge region.
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As depicted in Figure 4.29, for the 162 x 65 grid the i_w separation point is

at 0.9% chord and the dow reattachment point is at 1.45% chord, and for the 301

x 121 grid the _bw separation point is at 0.9% chord and the i_bw reattachment

point is at 1.32% chord. This is compared with the baseline case for the 301 x 121

grid, which had a reattachment point is 5.1% chord. Hence, the Ebw separation

region is signi_antly decreased.

This study at the lower incidence angle has shown that the E-ntter stability

in the leading edge region can be improved through changes in the front camber

of the airfoil. Therefore, the more challenging case for the large mean incidence

angle condition will now be considered where the suction surface leading edge is

highly loaded and a large separated £bw region is present.

4.3.8. Baseline Case: Steady Flow for _ = 10°

The baseline case uses the original airfoil surface coordinates. The airfoil contour

is illustrated in Figure 4.3.

The cascade inlet _w angle was varied until the best match was found between

the steady chordwise pressure coefficient data (Cp) and the predictions. This

resulted in a 7.5 ° chordal incidence angle being used in all the presented Fbw

solutions. Computations were conducted using the same three grid sizes as for

the small mean incidence angle case. The lift coefficient convergence history for

the grid sizes of 181 x 81,301 x121, and 162 x 65 is presented in Figure 4.30.

Figure 4.31 presents the correlation of the predicted steady surface pressure

coefficient with the experimental data. The correlation of the predictions with the

experimental data shows there is a deviation with the experimental data along the

upper surface in the leading edge region where the [A)w is separated. The larger

grid gives a slightly higher pressure coefficient in the separation region, but yields

the same reattachment point as the 181x81 grid.

Flow visualization at mid-span in the cascade indicated the _ow was separated

from the leading edge to about 40% of chord. The predicted reattachment point for

the three grids is given in Table 4.3. The deviation of the predicted reattachment

point with the experimental data is attributed to the turbulence model and the

lack of a transition model. The extent of the computed separation zone is shown

in Figure 4.32, which presents contours of pu.

For the 181 x 81 and 301 x 121 grids, the reattachment point is at 50% chord

while the reattachment point is at 53.6% chord for the 162 x 65 grid. As found

previously, for computational efficiency the grid size of 162 x 65 is sufficiently
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Figure 4.29: Low incidence 0 = 0° and 5 = 0 airfoil case pu contours.
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case.



0.4 _- _ Baseline Experimental Data
-- Baseline Case (Grid size: 162x65)
..... Baseline Case (Grid size: 181x81)

0.3 -- Baseline Case (Grid size: 301x121)
M = 0.50

0.2 _I E=IO°

"_"_ 8 = -6.2 °
0.1

_. " _ 6 = 0.066

'° 0 -

-0.1 i f " - - "
-0.2

-0.3't- .... I .... I , , , , I .... I
0 0.25 0.5 0.75 1

X

Figure 4.31: High incidence baseline case steady surface pressure coefficient dis-
tribution.

Table 4.3: InT_uence of grid resolution on reattachment point for the high incidence

angle case.
Airfoil Case Grid Size Separation Point Reattachment Point

NASA/P&W 181 × 81 0.005C 0.500C

NASA/P&W 301 ×121 0.005C 0.500C

NASA/P&W 162 × 65 0.005C 0.536C
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Figure 4.33: Work-per-cycle for high incidence baseline case.

accurate for the this study.

4.3.9. Baseline Case: Unsteady Flow for _ = 10°

The in[_ence of time step size on the unsteady simulations was also investigated

for the large mean incidence angle case. The grid size of 181 × 81 was used for this

study. Figure 4.33 presents the predicted work-per-cycle for 1024 points-per-cycle,

2048 points-per-cycle, and 4096 points-per-cycle. These results indicate that the

work-per-cycle is constant after the second cycle and there are negligible differ-

ences in the work-per-cycle with time-step size for the values selected. Further-

more, for this [5_w condition 1024 points-per-cycle is sufficient for the unsteady

simulations. Thus 1024 points-per-cycle was used for all subsequent unsteady

simulations.

The _st harmonic pressure coefficients are shown in Figure 4.34. The imagi-

nary part of the lower surface is underpredicted. The upper surface pressure coeffi-

cients are ink_uenced by the separation region with large pressure [:hctuations over

the _st half of the airfoil. Similar results have been found by Sid@n[5] when simu-

lating subsonic unsteady separated [ibw generated from mid-chord pitching oscilla-

tions at large mean incidence angles for the Fifth Standard Conk'guration[28]. The

reported results exhibited larger predicted pressure k_uctuations in the separation



zonethan the experimentaldata, asillustrated for the presentcase.
The predictions do show trendwiseagreementwith the experimentaldata.

While the magnitudesareoverpredictedcomparedto the experimentaldata, the
unsteadypressurecoeffÉcientchangesthat result from leadingedgecamberline
changescanbeusedto showhowanairfoil subjectedto theseoperatingconditions
canbemodi[_d for Ehtterstability.

The predictedunsteadypressurecoefficientsfor the threedifferentgrid sizes
are closein agreementwith eachother, but a larger deviation in the real part
is exhibited on eachsurfacefor the 301× 121grid. However,the imaginary
part of the unsteadypressurecoefficient,which governsthe work impulseshows
muchbetter correlation. Hence,thesolutionsfor the differentgrid sizeswhere
consideredasbeingin closeenoughagreementto proceed.

Theseresultsdo indicate that further work in turbulenceandtransition mod-
eling for thesetypesof operatingconditionsis needed.

4.3.10. Optimal Leading Edge Camber Height Case: Steady Flow for
= 10 °

The optimal leading edge camber height case yields stability in the leading edge

region with minimum leading edge camber height changes from the baseline airfoil

shape while maintaining the baseline airfoil leading edge angle (0 = -6.2°), see

Figure 4.35.

The steady Ebw simulation lift coefficient convergence history is shown in Fig-

ure 4.36. The lift coefficient reaches a steady value after the initial transients from

the uniform [_bw initial condition. This indicates the solution has converged.

The change in airfoil shape for the optimal leading edge camber height case

generates a change in the steady surface pressure coeËficient from tile baseline

case and the experimental data, as shown in Figure 4.37. There is an increase in

the pressure coefficient on each surface in the leading edge region and a decrease

in the pressure coefficient in the mid-chord region. In addition, there is good

correlation between the solutions for the two different grid sizes.

4.3.11. Optimal Leading Edge Camber Height Case: Unsteady Flow
_= 10 °

The unsteady moment coefficient for the oscillating airfoil simulation converges

to a sinusoidal wave type shape after two oscillation cycles, Figure 4.38. The

overall work-per-cycle converges to a constant value after two oscillation cycles as
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leading edge camber height case, 6 = -0.023.
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illustrated in Figure 4.39. These results indicate the solution has converged to a

steady oscillatory solution.

The inRbence of the change in airfoil shape for the optimal leading edge camber

height case on the _st harmonic unsteady surface pressure coefficient is depicted

in Figure 4.40. The predicted unsteady surface pressure coefficient is increased in

value compared to the baseline case over the Frst half of tile airfoil on the lower

surface On the upper surface the peak value of imaginary part of the unsteady

pressure coefficient is reduced in value and shifted towards the leading edge. The

real part has decreased in value aft of 50% chord. Furthermore, there is excellent

agreement in the unsteady surface pressure coefficient between the solutions for

the two different grid sizes.

From the work impulse results presented in Figure 4.41, the optimal leading

edge camber height case indicates stability in the leading edge region. Hence,

the optimal leading edge camber height case has been stabilized with a minimum

change in 6 with constant 0. In addition, there is excellent correlation between

the solutions for the two different grid sizes.

Figure 4.42, shows that the [:bw separates at 0.5% chord; and reattaches at

19.9% chord for the 162 x 65 size grid and 23.7% chord for the 301 x 121 size grid.

Thus, the separation region has been reduce compared with the baseline case
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Figure 4.39: Work-per-cycle for the high incidence optimal leading edge camber

height case, 6 = -0.023.

where the reattachment point was predicted to be at 50% chord for the 181 x 81

grid and the 301 x 121 grid.

This approach was also attempted for the leading edge camber angle changes

to the NASA/P&W airfoil; i.e. look for a minimal change in 0 holding 6 constant.

Solutions were found for increasing and decreasing values of the leading edge

camber angle, 0. There was a concern that these results were being in_uenced to

a high degree by the turbulence model and that these solutions needed further

investigation.

4.3.12. 0 = 0 ° and 6 = 0 Case: Steady Flow for _ = 10 °

The 0 = 0 ° and 6 = 0 airfoil gives a stable work impulse function with both leading

edge camber height changes and leading edge camber angle changes. The airfoil

shape is shown in Figure 4.22. The lift coefficient convergence history is shown in

Figure 4.43. These results indicate the steady [2bw solution has converged.

Figure 4.44 shows there is an obvious change in the steady surface pressure

coefficient for the 0 = 0 ° and 6 = 0 airfoil compared to the experimental data

and the baseline case. The Cp is increased in the leading edge region for the

both pressure and suction surfaces and decreases along the chord compared with
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Figure 4.43: Lift coefficient convergence history for the high incidence 0 = 0° and
6 = 0 case.

baseline case. The two different grid sizes show good correlation with each other.

4.3.13. 0 = 0 ° and 6 = 0 Case: Unsteady Flow for _ = 10 °

For the oscillating airfoil simulation, Figure 4.45 shows the unsteady moment

coefficient converges to a sinusoidal type shape in two oscillation cycle indicating

a converged solution. This is further illustrated by the work-per-cycle presented

in Figure 4.46, which converges to a cycle independent value after two oscillation

cycles.

Figure 4.47 illustrates the difference between the baseline case and the 0 = 0 °

and 6 = 0 case for unsteady surface pressure coefficient. As was found in the

previous case, the predicted unsteady surface pressure coefficient has increased in

value compared to the baseline case over the 5tst half of the airfoil on the lower

surface On the upper surface the peak value of imaginary part of the unsteady

pressure coefficient is reduced in value and shifted towards the leading edge. Also,

the real part has decreased in value aft of 50% chord. Excellent agreement is

exhibited in the unsteady surface pressure coefficient predictions for the solutions

from the two different sized grids.

The work impulse shown in Figure 4.48 indicates the 0 = 0° and 6 = 0 case is

stable in the leading edge region. As depicted in Figure 4.49, the _w separation
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Figure 4.48: Work impulse for the large mean incidence 0 = 0 ° and _ = 0 case.

point is at 0.5% of chord and the Lbw reattachment point is at 22.1% chord for

the 162 x 65 grid size, and 20.1% chord for the 301 x 121 grid size. Compared

with the baseline case where the reattachment point was predicted to be at 50%

chord (181 x 81 and 301 x 121 grids), the [:bw separation region is signiCcantly
decreased.

4.4. Summary and Conclusions

In this investigation the inThence of front camber on [_utter of a compressor airfoil

was investigated. The airfoil used in this investigation had a cross-section typical

of modern high performance low aspect ratio fan or compressor blades in aircraft

gas turbine engines. This cross-section would be found near the tip of the blade

where the [Zbw is supersonic at the design point. At part speed operating condi-

tions this portion of the blade would be subjected to high subsonic or transonic

Mach numbers and large mean incidence. Viscous effects are of signi E_cant impor-
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tance at these operating conditions due to EOw separation. For these operating

conditions the blade would be susceptible to subsonic/transonic stall _tter.

A previous experimental study for this particular airfoil cross-section was con-

ducted in the NASA Transonic Flutter Cascade at the Glenn Research Center.

The airfoil design originated at Pratt & Whitney and was given to NASA for test-

ing in the Transonic Flutter Cascade; this airfoil is referred to as the NASA/P&W

airfoil. In this investigation it was found that at large mean incidence the 5bw

had a large separation area over the front 40% chord, and in this region there was

a contribution towards airfoil instability, i.e. [ihtter. These results motivated this

investigation.

To accomplish the goal of investigating the in[_uence of front camber on airfoil

[_utter, an airfoil surface coordinate generator was developed. This airfoil surface

coordinate generator modi_d the leading edge region of the original NASA/P&W

airfoil by altering the leading edge camberline shape. The leading edge camberline

shape was controlled by the leading edge camber height (5) and the leading edge

camber angle (0), which were modi½d to change the leading edge airfoil shape.

The airfoil camberline shape was represented by a third-order polynomial, and the

camberline arc length was constrained to the original value of the NASA/P&W

airfoil. The original NASA/P&W airfoil thickness distribution was maintained

independent of the camberline shape changes.

The surface coordinate generator, grid generator, and Ebw solver were com-

bined to End the minimal changes in leading edge shape of the NASA/P&W airfoil

to stabilize the leading edge region for 2utter.

The Ebw conditions used in this study were a Reynolds number of 0.9 Million,

an inlet Mach number of 0.5, chordal incidence angles of 0 ° and 10°, a reduced

frequency of 0.4, and an interblade phase angle of 180 °. Both the steady and

unsteady [5_w computational results for the NASA/P&W (baseline) airfoil and a

simulated baseline airfoil, which was generated using the NASA/P&W values of

and 0 were compared to validate the geometry generator methodology. The simu-

lated baseline airfoil steady and unsteady Cbw solutions had good agreement with

the baseline airfoil steady and unsteady _w solutions validating the geometry

generator.

For the NASA/P&W airfoil contour the steady Ebw at low mean incidence

of (_ = 0 °) exhibited good correlation with the experimental data. There was a

small area where the predicted steady surface pressure coefficient was larger than

the experimental data. This was in the region where a small separation bubble

was present. This discrepancy is attributed to the turbulence model and the lack



of a transition model. The unsteady aerodynamic chordwise distribution of the

work-per-cycle showed good trendwise correlation with the experimental data,

but underpredicted the work contribution in the leading edge region indicating

more stability than the experimental data. A region close to the leading edge

was predicted to have a positive work-per-cycle contribution. To examine the

inEhence of front camber the an airfoil shape generated for 0 = 0 ° and (_ = 0 was

considered. Steady fflgw prediction for this modi_ed airfoil showed a decrease of

the small area of separated _w and an increase in stability in the leading edge

region.

For the chordal incidence angle of 0° the airfoil shape generated with 0 = 0 °

and 5 = 0 was considered. Steady _w prediction for this modi_d airfoil showed

a decrease of a small area of separated ILbw in the leading edge region and an

increase in stability in the leading edge region.

The optimal leading edge camber height case was found for the chordal in-

cidence angle of 10°. Steady and unsteady Ebw predictions for this case was

compared with the NASA/P&W airfoil case. There was a decrease in the pre-

dicted separation bubble size and an increase in the predicted stability in the

leading edge region.

Also, for the airfoil shape generated with 0 = 0 ° and 5 = 0 was considered at

a chordal incidence angle of 10 °. Steady k_w prediction for this modiUed airfoil

showed a decrease in separated [R)w in the leading edge region and an increase in

stability in the leading edge region.

From this investigation, the following major conclusions are drawn:

1. It was demonstrated that front camberline shape is an important factor for

stabilizing the work-per-cycle. By using this method, the airfoil shape in

the leading edge region can be modi_ed tt_ough changes in the leading edge

camber angle, 0, and the leading edge camber height, 5, until the work-per-

cycle becomes stable.

2. The application of this airfoil shape modi_ation methodology was to de-

crease or eliminate the probability of [htter in gas turbine engines in this

study. However, this method could also be used to improve compressor

performance at off-design conditions.



5. ANALYSIS OF PERIODIC

PRESSURE DATA

UNSTEADY

To verify the mathematical assumptions used in unsteady aerodynamic models

experimental data is needed. Experiments at positive incidence angles have been

conducted, for example, by Carta and St. Hilaire[7],[8], Carta[9], Szechenyi and

Finas[29], Szechenyi and Girault[30], Buffum et al.[10], Buffum et al.[il], Lep-

icovsky et a1.[311,and Hayden et a1.[32]. These experiments cover a range of

incidence angles, reduced frequencies, Mach numbers, and interblade phase an-

gles. In these experiments to simulate []utter the blades are force oscillated in a

prescribed motion using mechanical or electromechanical mechanisms.

This chapter discusses the analysis of this type of experimental data. The

analysis presented accounts for variations that may occur in the forced oscillation

system using a spectral block averaging technique. This method (spectral block

averaging) subdivides the data into small blocks for analysis, and then averages

the results. The results of this method are compared with analyzing the data as

a single block. The spectral block averaging method was used in Lepicovsky et

a1.[33], because of its versatility. This data is used to highlight the difficulties

that can occur when analyzing this type of data using a single block approach.

Finally, for completeness an analysis that ensemble averages the time-dependent

pressure over one cycle of oscillation is considered. It should be emphasized that

these procedures can be applied to other time-dependent Lbw properties.

These analyses were developed to support experiments that were being con-

ducted in the NASA Glerm Research Center Transonic Flutter Cascade (TFC).

5.1. NASA Glenn Research Center Transonic Flutter Cas-

cade

The NASA TFC (Figure 5.1) combined a linear cascade wind tunnel (Figure 5.2)

capable of inlet Ebw approaching a Mach number of 1.2 with a high-speed airfoil
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Figure 5.1: Schematic diagram of NASA TFC.

drive system. The drive system produced a torsional (pitching) oscillation to the

cascaded airfoils at speci_d interblade phase angles and realistic values of the

reduced frequency. This mechanism may drive from one airfoil up to all nine

airfoils. Using different cams the airfoils may be oscillated at amplitudes of 0.6 ° ,

1.2 ° , or 2.4 ° .

The airfoil oscillation system is driven by a 74.6 kl,l" electric motor that force

oscillates the airfoil in a pitching (torsional) motion. The airfoil motion is gener-

ated using a six-cycle sinusoidal groove that is machined in the periphery of nine

cams, which can be connected to each individual airtbil through a linkage assem-

bly. Each revolution of the cam gives six oscillations of the airfoil. A proximity

probe quantifSes the oscillation motion, Figure 5.3. Due to [_uctuations in the

motor rotational speed minor Fluctuations can be generated in the frequency of

oscillation of the blade. Further details on the capabilities of this facility can be

found in Buffum and Fleeter[34].

Four airfoils are instrumented with [2ush mounted high frequency response

pressure transducers to measure the time-dependent pressure during airfoil oscil-

lation. Two airfoils have suction surface instrumentation and two airfoils have

pressure surface instrumentation (Lepicovsky et a1.[35]). A wall probe with D_e

high frequency response pressure transducers can be Ehsh mounted with the test



Figure5.2: Sideviewof NASA TFC test section.

SIX BLADE CYCLES
PER ONE CAM

Figure 5.3: Schematic diagram of proximity probe used for the NASA TFC.



sectionwall (Lepicovskyet a1.[33]).This allowsunsteadypressuremeasurements
to be takenwithout the bladespresent.

5.2. Data Analysis

Typically, the data of interest is the unsteady pressure at the oscillation frequency.

To determine the unsteady pressure at the oscillation frequency Fourier transforms

are generally used. For unsteady pressure data analysis one obstacle to overcome

is that of frequency leakage when using the Fourier transform. There are two types

of frequency leakage that will be considered in this paper: typical spectral leakage

such as that addressed by Burgess[36], and oscillating frequency leakage that is

caused by a slight change in the oscillation frequency of the airfoils. First, some

background information about the Fourier Transform is given and then various

methods for overcoming these leakage phenomena will be presented.

5.2.1. Fourier Transform

The Fourier transform is a product of the Fourier Series, which allows any signal

to be expressed as the sum of sinusoids as shown in Equations 5.1 and 5.2 from

Burgess[36]. The transform allows functions to be transformed from the time to

the frequency domain allowing each frequency component to be determined.

Fx(t) = X (f) ei2_#df, -:xD < t < :xD (5.1)
OG

FX (f) = x(t) e-_2_Pdt, -ee < f < oo (5.2)
oo

When considering digitally sampled data, the Discrete Fourier Transform (DFT)

is used, as shown in Equations 5.3 and 5.4 from Burgess[36].

n/2-1

xk = E X_ei2'_k/n 0<k<n-1 (5.3)

v=-n/2

X_ 1 n-_= _ xke_i2,_,k/n .... n < v < n 1 (5.4)
n 2- -2

k=0

This leads to the Fast Fourier Transform (FFT), which is used in many nu-

merical applications. The FFT cuts down the computation time from the DFT. A
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Figure 5.4: Illustration of Burgess nomenclature.

key assumption is the Fourier Transform assumes that the input signal is periodic.

When dealing with experimentally acquired data the entire data set may or may

not be periodic.

There are other issues to consider when using the Fourier transform. Fourier

transforms have some limitations such as the Nyquist criterion that states only

frequencies less than half of the sampling rate may be resolved in a Fourier spec-

trum. For example, in this experiment the sampling rate is 38,000 Hz. Therefore,

the highest frequency that the Fourier transform can resolve is 19,000 Hz. This

also leads to an effect called aliasing.

5.2.2. Fourier Transform Leakage Correction

Spectral leakage is caused when the actual frequency does not fall on a data point

or bin in the spectrum, see Figure 5.4 as presented by Burgess[36]. Therefore,

the amplitude information can be split across more than one bin. Following the

method outlined by Burgess, which is repeated below for completeness, the fre-

quency, amplitude, and phase can be corrected.

To start a ratio, Equation 5.5, is defined using the complex amplitudes that



straddle the actual frequency. The ratio is constructed so the actual frequency

is located closer to the larger amplitude peak in the spectrum. This can be seen

by looking at the equation for the non-integer part of the corrected frequency

value, Equation 5.6. The integer part of the actual frequency, p, must be selected,

by Li'st [l_ding the dominant peak and then examining the adjacent peaks for

the largest amplitude. The adjacent peak with the largest amplitude along with

the dominant peak make up the correction pair. Since both p and q are always

positive, p is always the peak in the correction pair with the lowest bin number.

rxpl
Rq- iXp+ll (5.5)

1
(5.6)

1 +Rq

The amplitude correction then becomes

or if ]Xv+l [ > ]Xr, [

21Xplrcq
A sin(rrq) (5.7)

A -_ 2 [Xp+l[ rr (1 - q) (5.8)
sin (rrq)

Likewise the frequency correction is

(P + q)
fm _--"''_-. (5.9)

It is important to note that this correction is for spectral leakage, this method

does not address oscillating frequency variation leakage.

5.2.3. Spectral Block Averaging

Spectral block averaging subdivides the time-dependent data - in this case pres-

sure data - into smaller sections or blocks. This is accomplished in the present

application of the method by determining the time required to complete multiple

cam revolutions, which is determined using the proximity probe. Each revolution

of the cam results in six airfoil oscillations. The time-dependent pressure in each

block is Fourier decomposed and the gi-st harmonic pressure determined. The

Crst harmonic pressure is then averaged to determine the resultant [i}st harmonic
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pressure for the pressure signal. This is a form of the signal enhancement concept

discussed by Gostelow[37]. Previous work in this facility, for example Buffum

and Fleeter[34] and Buffum et al.[ll][10], used a similar technique. However, the

blocks of data were dek3_ed based on 2_ points per block. The equipment used

in these previous studies was updated as discussed in Lepicovsky et a1.[35]. In

addition, the data analysis routines from the previous studies were not available.

This motivated the development of the data analysis procedures discussed in this

Chapter. Furthermore, the availability of current commercial software allowed

more versatility in the data analysis procedures.

The spectral block averaging method is governed by the use of a proximity

probe to track the blade motion. The proximity probe signal is used to subdivide

the pressure signal into smaller, more manageable pieces or blocks, Figure 5.5.

The smaller blocks of data use a smaller time segment of the periodic signal

for analysis. The use of the smaller data blocks allows a more accurate method to

accolmt for oscillating frequency variation. Spectral leakage can also be addressed

when using this method by leakage correcting each block of data. Each block

is then analyzed individually. Once all the blocks have been processed the key



unknowns (pressure frequency, pressure amplitude, phase angle, surface pressure

coefficient, etc.) are then averaged. It is important to note that the small changes

in the oscillation frequency' do not affect the physics of the experiment; it just

makes it difficult to perform the Fourier transform accurately.

5.2.4. Ensemble Averaging of the Time-Dependent Signal

A popular method for averaging time-dependent data is the ensemble averaging

technique. In the present apphcation of this technique the pressure signal is

averaged over one period. Tiffs can be challenging since the oscillation frequency

is not constant over the entire data set. Actually the frequency can change from

one period to the next, changing the number of data points per period and the time

it takes to complete one period. Therefore, a mapping scheme is implemented,

mapping each point in every period from 0 ° - 360 °. The signal must then be

interpolated for all of the individual periods to have the same number of points;

this can not be neglected since the oscillation frequency can be changing from one

period to the next. All of the individual periods can then be summed and divided

by the number of periods to Ehd one ensemble averaged period.

A difficulty that arises with the above procedure is that the time differential

between each of the data points (At) has been altered by the averaging process.
This needs to be accounted for if it is desired to use the Fourier transform on the

ensemble averaged results. It was found that using an average (At) overcame this

difficulty. A Ebw chart for this process is presented in Figure 5.6.

5.3. Acceleration Correction of Oscillating Blade Data

The TFC oscillates the blades in the cascade in a pitching motion to simulate _ut-

ter of a fan or compressor blade. To determine the time dependent pressure during

blade oscillation, the blades have been instrumented with high frequency response

pressure transducers. During controlled oscillation these pressure transducers are

subjected to inertial loading due to the motion of the blade and strain loads due

to any gexing of the blade. For discussion purposes these contributions will be

called 'inertial loading' or 'acceleration loading'. This time dependent loading on

the pressure transducer appears as an additional pressure component. Therefore,

the pressure measured during blade oscillation has two contributions. One con-

tribution is due to the unsteady pressure caused by blade oscillation. The second

component is due to the inertial loading on the transducer caused by oscillation
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of the blade in which the transducer is installed. This presents the problem of dis-

cerning the unsteady pressure data from the acceleration loading on the pressure

transducers. Hence, a correction is needed to account for this additional loading

on the transducer.

To correct for the acceleration loading on the transducers a series of exper-

iments were undertaken. In this series of experiments blade oscillations were

conducted in the TFC with no [_bw so that the acceleration loading could be

quanti[2ed using the same oscillation mechanism that would be utilized during

actual testing; it is preferable to conduct these experiments in a vacuum. From

these experiments the 'apparent pressure' due to inertial loading is determined for

each blade-mounted transducer over the entire range of blade oscillation frequen-

cies that will be used in the [51tter simulation experiments. This 'pressure' signal

is Fourier decomposed into harmonics and the amplitude and phase are quanti[Jted

for each frequency of oscillation and for each pressure transducer.

These results represent correction coefficients that are used to modify the un-

steady pressure measurements from _tter simulations for acceleration loading.

This is accomplished by using the following procedure. The unsteady pressure

measurements from a k-Utter simulation experiment are transformed to the fre-

quency domain using Fourier decomposition (Spectral Block Averaging Analysis).

The correction coefficients, which represent the 'apparent' pressure loading due

to inertial loading on the pressure transducer, are then subtracted from the mea-

sured unsteady pressure. From this operation the unsteady pressure due to blade

oscillation is recovered, as given by the following equation.

Corrected Pressure Pressure No Flow 'Apparent' Pressure

Motion Motion Motion
(5.10)

Figure 5.7 is a k2)w chart that illustrates the process.

5.4. Results

In this section results are presented for data taken from three series of experiments.

The _st series concentrated on collecting time-dependent pressure data from a

wall probe with the center airfoil oscillating (airfoil #5) in the cascade with all

other airfoils Eked. In the second series of experiments, time-dependent pressure

data was acquired from the blade mounted transducers on a stationary airfoil (air-

foil #6) adjacent to the center oscillating airfoil. The [5_al series of experiments
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Figure 5.7: Flow chart illustrating the steps necessary to correct for transducer

acceleration loading.

involves the measurement of the unsteady pressure from the transducers mounted

on the center oscillating airfoil (airfoil #5).

In the _st and second series of experiments, the center airfoil (airfoil #5)

was oscillated at frequencies from 200 Hz to 500 Hz, in 100 Hz increments. A

comparison is made between the spectral block averaging method and a spectral

analysis based on using the entire data set as a single block. The wall probe

results are for a cascade inlet Mach number of 0.8, and the airfoil results are for

a cascade inlet Mach number of 0.5.

Experiment series three presents both _w, Mach number of 0.5, and no ffbw

results showing the acceleration correction analysis process in detail for one trans-

ducer. Results will then be presented for all of the working transducers on the

KS2 airfoil for frequencies from 50 Hz to 500 Hz in 50 Hz increments.

5.4.1. Data Analysis

Wall Probe

Figure 5.8 illustrates the change in the first harmonic pressure amplitude at the

cascade wall between airfoils #5 and #6 as the frequency of the center oscillating

airfoil is changed from 200 to 500 Hz.

The spectral block analysis method has slightly increasing amplitude as the

oscillation frequency increase. However, conducting the spectral analysis using
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Figure 5.8: Comparison of the spectral block averaging and typical FFT method

using time-dependent pressure data taken from the wall probe.

the entire data set resulted in amplitudes that were lower in amplitude than

the spectral block averaging technique. This was a result of the classical spectral

leakage and the slight variation of the airfoil oscillation frequency over the duration

of the experimental data set. Correcting the Frst harmonic amplitude for spectral

leakage using the Burgess method presented above improves the correlation with

the spectral block averaging technique except at 500 Hz, which still exhibited a

much lower _st harmonic amplitude.

Examining the spectrum for 500 Hz it was found that a dominant frequency

was not apparent, as shown in Figure 5.9. This indicates that the forced oscil-

lation frequency was Fuctuating over the duration of the data set resulting in

the oscillation frequency being spread over multiple bins in the spectrum. The

relations presented by Burgess are not applicable for this case. The variation in

the oscillation frequency for the 400 Hz and 500 Hz data is illustrated in Figure

5.10, which presents the frequency as a function of block number from the spectral

block averaging method.

From this Ugure it can be seen the oscillation frequency variation is larger

for 500 Hz than for 400 Hz. While the frequency varies only slightly over the

duration of the test, this variation is large enough to have an effect on the Fourier
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transform.

•Spectral block averaging subdivides the data into smaller blocks and uses the

proximity probe to insure the data is periodic. This normally provides results

where Burgess's leakage correction is not necessary. One block of data for 400

and 500 Hz oscillation frequency is shown in Figure 5.1 I.

A well deChed peak can be found at each oscillation frequency with negligible

leakage. This illustrates one of the bene_s of using the spectral block average

method.

Stationary Airfoil Adjacent to Oscillating Airfoil

Analogous results are found for the unsteady pressure measured on airfoil #6

adjacent to the oscillating airfoil #5. Figure 5.12 shows the change in the _st

harmonic pressure amplitude as the frequency of the center oscillating airfoil is

changed from 200 to 500 Hz.

As was shown above, conducting the spectral analysis on the entire data set

results in amplitudes that have a lower amplitude than the spectral block averaging

method. Correcting the Prst harmonic amplitude for spectral leakage is seen to

improve the correlation with the spectral block averaging technique except at 200

and 500 Hz, which still exhibited a lower _st harmonic amplitude.
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This deviation is attributed to the F2uctuation of the airfoil oscillation fre-

quency. The variation of the oscillation frequency as a function of block number

from the spectral block averaging method is illustrated in Figure 5.13.

The [2gure shows that although small the frequency variation is more for 200

Hz than for 300 Hz. Figure 5.14 again shows that each block has a well deLhed

peak, eliminating the effects of the slight change in the oscillation frequency.

Ensemble Averaging

For completeness, it was also desirable to compare the spectral block averaging

method to the ensemble averaging method. Figure 5.15 shows the time-dependent

wall probe pressure ensemble averaged over one period of oscillation of the center

airfoil. In this [_ure the center airfoil is oscillating at a frequency of 400 Hz. The

periodic nature of the data is clearly evident.

Fourier transforms of the ensemble averaged data were conducted using the At

determined from the averaging process for the data sampling period for each airfoil

oscillation frequency. These Fourier transforms are compared with the spectral

block averaging method in Figure 5.16. This [Pgure shows exceptional correlation

between the two methods.



Blade # 6 Data

Mach 0.5

200 Hz

Not Correctable

Figure 5.13: Frequency-per-block results demonstrating frequency change for a

pressure transducer on airfoil 4p6.

32

< 1

0.5

Blade #6 Data
Mach 0.5
300 Hz

I •

300

Blade #6 Data
lVlach0.5
200 Hz

z;o z;s 3;s ,;o _,;s 2;o 205
Blade Oscillation Frequency (Hz)

Figure 5.14: Spectra for one data block from the Spectral Block Average Method

for a pressure transducer on airfoil #6.



67

6_

65

64

"o 63

62

< 61

60

5:

Time (ms)

Figure 5.15: Ensemble averaged pressure for wall probe pressure transducer with

the center cascade airfoil oscillated at a frequency of 400 Hz.

3.!

"_2.

<

O O I

-0- llh_k Avg.

,Ea._-rab_ A_g

l_0 2_ 3_ 4_0

Blade Oscillation Frequency (llz)

Figure 5.16: Comparison of Spectral Block Averaging and Ensemble Averaging

for pressure data from a,wall probe transducer with the center cascade airfoil

oscillated over a range of frequencies.



5.4.2. Acceleration Correction

The analysis procedure for acceleration correction will be shown in detail for Kulite

transducer 11 at an oscillation frequency of 200 Hz. The data set C2 69 05 KS2_11

is for no Lbw. The corresponding data set that has a test section Mach number

of 0.5 is C2 69 37 KS2_11. Figure 5.17 presents the results of the Fourier

analysis performed on these two sets of data.

In each case the data set is analyzed using the spectral block averaging method.

Figure 5.17(a) is for the no Ebw case and Figure 5.17(b) is for the Fbw case. The

top most plots in Figures 5.17(a) and 5.17(b) illustrate the variation of the pressure

amplitude as a function of block number. Each data block is composed of 5 cam

revolutions or 30 oscillation cycles. There is a variation in the pressure amplitude

from block-to-block, which is very small for the no [:bw case. Note that for the

M = 0.5 case the pressure signal has not been corrected for acceleration loading.

The second plot in each column is the phase angle.

The third plot in each column presents the ensemble averaged signal and the

Fourier reconstructed signal using the averaged _st harmonic signal amplitude

and phase. The ensemble averaging was conducted over one cycle of oscillation.

The ensemble averaged signal exhibits some high frequency components that are

superimposed on the 200 Hz blade oscillation frequency. The Fourier recon-

structed signal using the first harmonic amplitude and phase from the Spectral

Block Averaging technique is seen to be a good representation of the 'mean' of

the ensemble-averaged data. The Fourier spectrum of each block of data (fourth

plot in each column) illustrates the signal is composed of the _st harmonic of the

blade oscillation frequency with smaller higher order harmonics, plus some much

higher frequency contributions.

From the ensemble averaging it is apparent that these high frequency com-

ponents are synchronous with blade oscillation. If the higher frequency were not

in-phase with the blade oscillation, the higher frequency components would have

been substantially reduced in magnitude or eliminated by the ensemble averaging

process. To examine this further the proximity probe and pressure signal were

interrogated; the data from the proximity probe was used to determine the time

dependent change in blade angle during oscillation. These signals are presented

in Figure 5.18.

Comparing the motion signal to the pressure signal it can be observed that

at the +/- peaks of the oscillation motion that there is a rapid increase in the

Ehctuations of the pressure signal. This occurs at the location where the blade

changes from a pitching up motion to a pitching down motion for the positive peak,



Pier
¢22

e.zT_

_ ¢.2:

e._

e,.16{

3o{

.-z..
.=.
-2

esstue Amplihlde Per Block

Block #

Phase ._lgle

IlAd

1"42! _
o.3s ! _ / ", I r,

/ _

l.l_U ,

Per Block

s_

_4

-lOOt

Block #

Ensemble Averaged Pressme Signal

p

Bin Bin #

,,

":1" -sii :l
l:h-essure Frequency Specmun per Block

m .-

L_
,_.

Block # Block# _

n

*_0Frequency (I-Iz) . " Frequency (Hz)
(a) (b)
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ducer 11 on blade KS2 oscillating at 200 Hz, (a) pressure signal for no kbw; and
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and where the blade changes from a pitching down motion to a pitching up motion

for the negative peak. It is possible that the blades are subjected to an impulse

load at each of these locations. Hence, the source of the transducer response

could be a result of the blade responding at its natural frequencies or possibly a

resonant response of the transducer-RTV system; note that the transducers are

covered with a thin protective layer of RTV, which is L3ush with the airfoil surface.

The source of this response needs further investigation.

Using this technique of oscillating the blades for the no-[2Dw condition, correc-

tion coefficients for all blade mounted pressure transducers are quanti[_d. Figure

5.19 illustrates the change in amplitude and phase for transducer 1 on blade KS2

as a function of oscillation frequency.

The amplitude correction is observed to increase quadratically with oscillation

frequency. This is to be expected since the acceleration amplitude will increase

as the square of the oscillation frequency. Little change in the phase correction

factor was found with increasing oscillation frequency. This is typical of the re-

stilts obtained for all the pressure transducers. Hence, these calibration curves are

constructed for each pressure transducer and are used to correct for acceleration

loading on the pressure transducers during [3utter simulations. Figure 5.20 illus-

trates the amplitude correction for all pressure transducers on blade KS2 over the

range of oscillation frequencies used in the TFC.
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Figure 5.21: Corrected pressure amplitudes for airfoil KS2 at a test section Mach
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Using these calibration curves for the pressure transducers on blade KS2, the

experimental data for blade oscillation at a test section Mach number of 0.5 is

corrected using Equation 5.10. The results of the correction process are presented

in Figure 5.21. This analysis is completed by calculating the acceleration corrected

_st harmonic surface pressure coefficients.

5.5. Summary and Conclusions

This chapter presented a comparison of different data analysis techniques for pe-

riodic unsteady data. Analysis results were presented for data generated in the

NASA Glenn Research Center Transonic Flutter Cascade. The unsteady pressures



weremeasuredusinghigh frequencyresponsepressuretransducers.In eachcase
airfoil #5 wasoscillatedat incrementalfrequencies.The applicationwasfor time
dependentpressuresgeneratedfrom oscillatingairfoils. However,the methods
could beappliedto other time-dependentquantities.

The spectralblock averagingmethodwaspresented.This methodwasableto
accountfor variationsin the airfoil oscillationfrequencybecauseit subdividesthe
data into small enoughblocksthat theeffectsof oscillationfrequencychangeare
negligible. This makesthe spectralblockaveragingmethod moreversatilewhen
analyzing unsteadydata than the traditional method of performing a Fourier
transformon anentire dataset.

Ensembleaveragingis a commonmethodof processingperiodic signals.Like
the spectralblock averagemethod,ensembleaveragingcan also accountfor the
changesin oscillationfrequency.

Previousdataanalysisfor this researchhasusedthe SpectralBlock averaging
method(Buffumet al.[10]andBuffumandFleeter[34]).This previousworkuseda
blocksizebasedon2nand thereforeit wasnot naturally periodiclike the analysis
presentedhere. Howeverby using a combinationof a small block of pressure
data and a leakagecorrectionroutine, suchas that presentedby Burgess,this
previousworkwassuccessfulin accountingfor oscillatingfrequencyvariation. The
equipmentusedfor this researchwasupdated(Lepicovskyet al.[35]) and thedata
analysisroutineswerenot available.This motivated the development of the data

analysis procedures reported in this section. In addition, the availability of current

commercial software allowed more versatility in the data analysis procedures.

An correction method was presented for inertial effect on transducers mounted

in oscillating airfoils. An analysis of the time dependent pressures from the

transducers mounted on the center airfoil during oscillation uncovered some high

frequency components. Two possible sources of these frequencies are the airfoil

responding at its natural frequencies or a resonant response of the transducer-RTV

system. The source of this response needs further investigation.
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